This article was reviewed by Grace Imson, MA. Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University.
This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources.
This article has been viewed 1,233,723 times.
Radians and degrees are both units used for measuring angles. As you may know, a circle is comprised of 2π radians, which is the equivalent of 360°; both of these values represent going "once around" a circle. Therefore, 1π radian represents going 180° around a circle, which makes 180/π the perfect conversion tool for moving from radians to degrees. To convert from radians to degrees, you simply have to multiply the radian value by 180/π. If you want to know how to do this, and to understand the concept in the process, read this article.
Know that π radians is equal to 180 degrees. Before you begin the conversion process, you have to know that π radians = 180°, which is equivalent to going halfway around a circle. This is important because you'll be using 180/π as a conversion metric. This is because 1 radians is equal to 180/π degrees. [1] X Research source
Remember that there's a difference between "radians" and "π radians." If you say 2π radians or 2 radians, you are not using the same terms. As you know, 2π radians is equal to 360 degrees, but if you're working with 2 radians, then if you want to convert it to degrees, you will have to calculate 2 x 180/π. You will get 360/π, or 114.5°. This is a different answer because, if you're not working with π radians, the π does not cancel out in the equation and results in a different value. [3] X Research source
AdvertisementWe know from working with the numbers in the article above that one radian is equivalent to approximately 57.3 degrees. Therefore, you would multiply 57.3 by 1.03 to find the number of degrees you're looking for.
Thanks! We're glad this was helpful.
Thank you for your feedback.
If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission. Support wikiHow
The easiest way to do it is to recognize that 180° equals π radians, or 3.14 radians. Then determine what fraction (or percentage) of 180° the angle you're concerned with is, and multiply that fraction by 3.14 radians. For example, to convert 60° to radians, divide 60° by 180°. That's 1/3. Then multiply 1/3 by 3.14: that's 1.05 radians.
Thanks! We're glad this was helpful.
Thank you for your feedback.
If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission. Support wikiHow
Thanks! We're glad this was helpful.
Thank you for your feedback.
If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission. Support wikiHow
When multiplying, leave the pi in your radians as the symbol not the decimal approximation, this way you can more easily cancel it out during your calculation
Many graphing calculators come with functions to convert units or can download programs to do so. Ask your math teacher if such a function exists on your calculator.
Submit a Tip All tip submissions are carefully reviewed before being published Please provide your name and last initial Thanks for submitting a tip for review! Advertisement Things You'll NeedMemorize the Unit Circle" width="342" height="184" />
Memorize the Unit Circle Graph Sine and Cosine Functions Find Exact Values for Trigonometric FunctionsHow to Memorize Trigonometric Functions
How to Easily Solve Trigonometric Equations
How to Find Coterminal Angles
Use the Sine Rule Advertisement ReferencesThis article was reviewed by Grace Imson, MA. Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University. This article has been viewed 1,233,723 times.
40 votes - 86% Co-authors: 16 Updated: January 30, 2024 Views: 1,233,723 Categories: TrigonometryRadians and degrees are both units that you can use to measure an angle. Converting radians to degrees is pretty easy. First, remember that π radians is equal to 180 degrees, or half the number of degrees in a circle. That means that 1 radian is equal to 180 degrees divided by π. So, in order to convert radians to degrees, all you have to do is multiply the number of radians by 180 divided by π. For instance, let’s say you have to convert 1/2 π radians into degrees. Simply multiply π/2 by 180/ π to get 90 degrees. Be careful though, because while radians are usually written as multiples of π, this isn’t always the case. When you’re solving a problem where you have to convert radians to degrees, look at the numbers closely. Make sure, for example, that you don’t mix up 2 π radians with 2 radians. 2 π radians equals 360 degrees, or the number of degrees in a circle. However, 2 radians is equal to only about 114.6 degrees. For more examples of converting radians to degrees, read on!